

µCAN.TRS

Manual for the Analogue Transmitter with CAN Version 1.00

MicroControl GmbH & Co. KG Lindlaustraße 2 c D-53842 Troisdorf Fon: +49 (0) 2241 / 25 65 9 - 0 Fax: +49 (0) 2241 / 25 65 9 - 11 http://www.MicroControl.net

Table of Content

μCAN.	TRS
-------	-----

1.	Safety	Regulations 1		
	1.1	General Safety Regulations 1		
2.	Operation of µCAN.TRS 3			
	2.1	Overview		
3.	Projec	t Planning 5		
	3.1	Operation Area 5		
	3.2	Maximum System Layout 6		
	3.3	Case Dimensions		
4.	Install	ation		
	4.1	Potential Basics		
	4.2	EMC Considerations 10		
	4.2.1	Grounding 11		
	4.2.2	Shielding of cables		
	4.2.3	CAN Cable 12		
	4.3	Power Supply / CAN Interface		
	4.4	Address- and Bitrate-Setting 14		
	4.4.1	Baudrates 15		
	4.4.1 4.5	Baudrates15Termination15		
5.	4.5			
5.	4.5	Termination 15		
5.	4.5 Analog	Termination 15 gue Input 16		
5.	4.5 Analo 5.1	Termination 15 gue Input 16 General Information 16		
5.	4.5 Analo 5.1 5.2	Termination15gue Input16General Information16Temperature signals17		
5.	4.5 Analo 5.1 5.2 5.2.1	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17		
5.	4.5 Analo 5.1 5.2 5.2.1 5.2.2	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18		
5.	4.5 Analo 5.1 5.2 5.2.1 5.2.2 5.3 5.4	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18Connection of strain gauge19		
	4.5 Analo 5.1 5.2 5.2.1 5.2.2 5.3 5.4	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18Connection of strain gauge19Standard signals19		
	4.5 Analog 5.1 5.2 5.2.1 5.2.2 5.3 5.4 CANo	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18Connection of strain gauge19Standard signals19pen Protocol20		
	4.5 Analog 5.1 5.2 5.2.1 5.2.2 5.3 5.4 CANO 6.1	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18Connection of strain gauge19Standard signals19pen Protocol20Introduction21		
	4.5 Analog 5.1 5.2 5.2.1 5.2.2 5.3 5.4 CANo 6.1 6.2	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18Connection of strain gauge19Standard signals19pen Protocol20Introduction21Network Management22		
	4.5 Analog 5.1 5.2 5.2.1 5.2.2 5.3 5.4 CANo 6.1 6.2 6.3	Termination15gue Input16General Information16Temperature signals17Connection of temperature resisitors17Connection of thermocouples18Connection of strain gauge19Standard signals19pen Protocol20Introduction21Network Management22SDO Communication24		

Table of Content

µCAN.TRS

	6.4.1	Communication Profile
	6.5	Heartbeat Protocol
	6.6	PDO Communication
	6.6.1	Transmission Modes 36
	6.6.2	Transmit PDO 1 37
	6.6.3	Transmit PDO 2 38
	6.6.4	Synchronisation Message
	6.7	Emergency Message 40
	6.7.1	Device Specific Parameter 41
7.	Techni	cal Specification 42
	7.1	μCAN.TRS

µCAN.TRS

Remarks on CE-conformance of µCAN-modules

µCAN-modules which have CE-conformance label, have passed test specifications of EU-criteria 89/336/EWG "Electromagnetic Emission and Immunitiy" and standardized European norms (EN).

Papers of declaration for EU-conformance, according to Art.10 of EN, are available at:

MicroControl GmbH & Co. KG Lindlaustr. 2 c D-53842 Troisdorf Germany

MicroControl reserves the right to modify this manual and/or product described herein without further notice. Nothing in this manual, nor in any of the data sheets and other supporting documentation, shall be interpreted as conveying an express or implied warranty, representation, or guarantee regarding the suitability of the products for any particular purpose. MicroControl does not assume any liability or obligation for damages, actual or otherwise of any kind arising out of the application, use of the products or manuals.

The products described in this manual are not designed, intended, or authorized for use as components in systems intended to support or sustain life, or any other application in which failure of the product could create a situation where personal injury or death may occur.

The products meet the requirements for the European WEEE

© 2006 MicroControl GmbH & Co. KG, Troisdorf

No part of this documentation may be copied, transmitted or stored in a retrieval system or reproduced in any way including, but not limited to, photography, magnetic or other recording means, without prior written permission from MicroControl GmbH & Co. KG.

Safety Regulations

General Safety Regulations

	1. Safety Regulations			
	Symbol Explanation			
Attention !	This symbol marks a paragraph which explains possible danger. This danger might cause a damage to the system / plant or da- mage to personnel.			
Note	This symbol marks a paragraph which contains useful informati- on for the work with the device or which gives just a hint.			
	1.1 General Safety Regulations			
Attention !	Please read the following chapter in any case, because contains important information about the secure handling electrical devices.			
	This paragraph gives important information about the condition of use. It was written for personnel which is qualified and traine on electrical devices.			
	Qualified and trained personnel are persons who fulfil at least one of the following conditions:			
	• You know the safety regulations for automated machines and you are familiar with the machine.			
	• You are the operator for the machine and you have been trai- ned on operation modes. You are familiar with the operation of devices described in this manual.			
	• You are responsible for setting into operation or service and you are trained on repairing automated machines. In addition you are trained in setting electrical devices into operation, to connect the earthing conductor and to label these devices.			
Terms of use	The devices described in this manual can only be used for the mentioned applications. Other devices used in conjunction have to meet the safety regulations and EMI requirements.			

Safety Regulations

General Safety Regulations

Attention !	To ensure a trouble free and safe operation of the device please take care of proper transport, appropriate storage, proper assem- bly as well as careful operation and maintenance.
Hints for Installati- on	Please take care to observe the actual local safety regulations.
	If devices are used in a fixed machine without a mains switch for all phases or fuses, this equipment has to be installed. The fixed machine must be connected to safety earth.
	If devices are supplied by mains please take care that the selec- ted input voltage fits to the local mains.
Safety Notice	If devices are supplied by 24V DC, this voltage has to be isolated from other voltages.
	The cables for power supply, signal lines and sensor lines must be installed in a way that the device function is not influenced by EMI.
	Devices or machines for industrial automation must be construc- ted in a manner that an unintentional operation is impossible.
Attention !	By means of hardware and software safety precautions have to be taken in order to avoid undefined operation of a automated machine in case of a cable fraction.
	If automated machines can cause damage of material or person- nel in case of a malfunction the system designer has to take care for safety precautions. Possible safety precautions might be a li- mit switch or locking.

Operation of µCAN.TRS

Overview

2. Operation of µCAN.TRS

2.1 Overview

The μ CAN.TRS enpowers the user to simply connect a wide variaty of analogue signals direct to the CAN bus.

Fig. 1: Analogue data transmitter µCAN.TRS

Typical signals to be acquired by the μ CAN.TRS are temperature signals as well as analogue standard signals. Temperatuer sensors like Pt100 and Pt1000 resistors can direct be connected to the module. Thermocouple signals are linearized with an internal cold junction compensation. Also the use of a strain gauge is possible since the transmitter delivers the power output for th bridge. The standard signals +/-10V DC and 0(4)..20mA can also be connected.

The development in automation towards decentralized "intelligent" systems makes the communication between these components quite important.

Modern automated systems require the possibility to integrate components from different manufacturers. The solution for this problem is a common bus system.

All these requirements are fulfilled by the μ CAN.TRS module.

Operation of µCAN.TRS

Overview

	The μ CAN.TRS runs on the standard fieldbus CAN. Typical applications for the μ CAN.TRS are industrial automation, transportation, food industry and environmental technology.		
	The μ CAN.TRS runs with the protocol		
	CANOpen		
	according to the device profile DS-404. Other protocol stacks are available on request.		
space saving and compact	The μ CAN.TRS is designed for heavy duty applications. The aluminium cast ensures protection class IP65 up to IP67. The compact, space saving case gives the freedom to mount the module in many places.		
inexpensive and service friendly	The quick and easy integration of the μ CAN.TRS in your application reduces the development effort. Costs for material and personnel are reduced. The easy installation makes maintenance and replacement quite simple.		

Operation Area

3. Project Planning

The chapter Project Planning contains information which are important for the system engineer when using the μ CAN.TRS. These information include case dimensions and conditions of use.

3.1 Operation Area

The μ CAN.TRS is a robust field module for acquisition of analgue signals via the CANbus. Every module can handle one analogue input signal. The module has a power supply range of 8V - 40V DC.

The PCB is incorporated in a robust case of protection class IP65. The μ CAN.TRS is suited for mounting outside the switch cabinet. Long wires for actors or sensors are not longer necessary. Influence of EMI is reduced.

The μ CAN.TRS needs four wires for connection to the power supply and CAN bus. Special CAN bus cables are available as accessories (refer to Ordering Information).

Maximum System Layout

3.2 Maximum System Layout

For an operational system at least one network manager (or supervisor system) must be connected to the bus. This network manager might be a PLC or PC equipped with a CAN card. Every μ CAN.TRS module is an active node.

A CANopen network manager can handle up to 127 network slaves (refer to Fig. 2, "Maximum System Layout"). Every module gets a unique address, which is set up via a DIP switch. The CANbus bus is connected through the μ CAN modules. The last module in the network must be terminated by a termination connector. Connectors with CANbus termination are available at MicroControl.

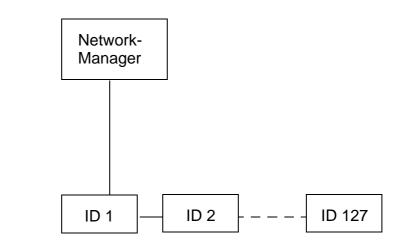


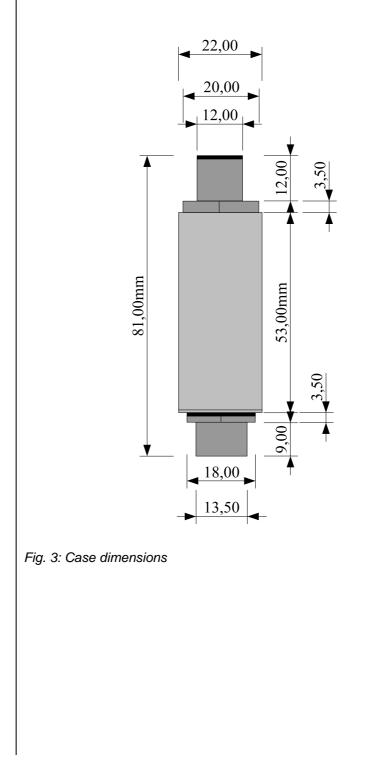
Fig. 2: Maximum System Layout

Maximum System Layout

The maximum cable length depends on the selected baudrate. The following table shows the maximum cable length recommended by the CAN in Automation (http://www.can-cia.org). These distances can be realized with the μ CAN.TRS.

Baudrate in kBit/s	Cable length in m
1000	25
800	50
500	100
250	250
125	500
100	650
50	1000
20	2500
10	5000

Table 1: Dependence of baudrate from cable length



It is recommended by the CAN in Automation **not to use** the baudrate 100 kBit/s in new CANopen systems.

Case Dimensions

3.3 Case Dimensions

The case dimensions of the module are given in the drawing below. The high protection class IP65 of the module allows an assembly at places with a harsh environment. It is possible to mount the module inside a switching cabinet as well as direct on a machine. Please check the technical data section for detailled information about maximum environment conditions.

Installation

Potential Basics

4. Installation

4.1 Potential Basics

The potential environment of a system that is realized with μ CAN modules is characterized by following features:

- The CAN bus potential is isolated from the power supply.
- The electronic of the µCAN modules is isolated from the power supply.
- All µCAN modules have a separate power supply.
- All I/O signals are optically isolated from the CAN bus potential.

EMC Considerations

4.2 EMC Considerations

EMC (Electromagnetic Compatibility) is the ability of a device to work in a given electromagnetic environment without influencing this environment in a not admissible way.

All μ CAN modules fit these requirements and are tested for electromagnetic compatibility in a EMC laboratory. However a EMC plan should be done for the system in order to exclude potential noise sources.

Noise signals can couple in different ways. Depending on that way (guided wave propagation or non-guided wave propagation) and the distance to the noise source the kinds of coupling are differentiated:

DC Coupling

If two electronic circuits use the same conductor we speak of a DC coupling. Noise sources are in that case: starting motors, frequency converters (switching devices in general) and different potentials of cases or of the common power supply.

Inductance Coupling

An inductance coupling is given between two current-carrying conductors. The current in a conductor will cause a magnetic field which induces a voltage in the second conductor (transformer principle). Typical noise sources are transformer, power cables and RF signal cables.

Capacitive Coupling

A capacitive coupling is given between two conductors which have a different potential (principle of a capacitor). Noise sources are in that case: parallel running conductors, static discharge and contactors.

RF Coupling

A RF coupling is given when electromagnetic fields hit a conductor. This conductor works like an antenna for the electromagnetic field and couples the noise into the system. Typical noise sources are spark plugs and electric motors. Also a radio set might be a noise source.

To reduce the impact of noise sources please take care to follow the basic EMC rules.

Installation

EMC Considerations

	4.2.1 Grounding		
General	All inactive metal plates must be grounded with low impedance. By this step all elements of the system will have the same poten- tial.		
	Please take care that the ground potential never carries a dan- gerous voltage. The grounding must be connected to the safety earth.		
Grounding of other modules	If μ CAN modules are shipped in a plastic case they have to be grounded with a metal tape.		
	4.2.2 Shielding of cables		
	If noise is coupled to a cable shield it is grounded to safety earth via the metal cover. The cable shields have to be connected to the safety earth with low impedance.		
Cable Types	For installation of the μ CAN module you should only use cable with a shield that covers at least 80% of the core. Do not use cable with a shield made from metallized foil because it can be damaged very easy and has not a good shielding.		
Cable Layout	In general the cable shield should be grounded on both ends. The cable shield should only be grounded on one end if an atten- uation is necessary in the low frequency range. The cable shield can not be grounded on both ends for temperature sensors. The grounding on one end of the cable is necessary if		
	 there is no contact to the safety earth possible, analogue signals with only a few mV or mA are transmitted (temperature sensors). 		

EMC Considerations

4.2.3 CAN Cable

The CAN cable must meet the requirements of ISO11898. The cable must meet the following specifications:

Parameter	Value
Impedance	108 - 132 Ohm (nom. 120 Ohm)
Specific Resistance	70 mOhm/Meter
Specific Signal Delay	5 ns/Meter

Table 2: Specifications of CAN bus cable

The CAN bus cable is connected to the μ CAN.TRS module via terminals inside the case. For the pinning of the terminal refer to "Power Supply / CAN Interface" on page 13 of this manual.

Attention !

Do not confuse the signal lines of the CAN bus, otherwise communication between the modules is impossible. The shield of the CAN bus cable may never lead inside the μ CAN case. Never connect the shield to one of the terminals inside the case.

Power Supply / CAN Interface

4.3 Power Supply / CAN Interface

The μ CAN.TRS modules are designed for industrial applications. The supply voltage must be within the range from 8 V DC to 40 V DC. The input is protected against confusing the poles.

Please make sure not to confuse the poles when connecting the power supply. The positive supply is connected to the terminal **V+**. The negative supply is connected to the terminal **GND**.

Fig. 4: Connection of power supply

The CAN interface is connected via 2 pins of the M12 connector. Also make sure not to confuse CAN_H and CAN_L.

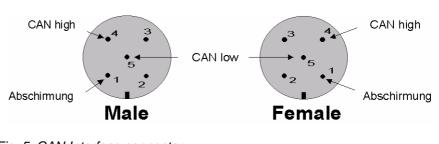


Fig. 5: CAN Interface connector

The M12 connector has the pinning according to the CiA specifiction for CANopen devices.

Installation

Address- and Bitrate-Setting

	CAN high CAN high CAN high CAN low CAN low CAN low CAN low CAN high CAN high
	Fig. 6: Complete pinning of M12 Power+CAN connector
Attention !	A cable shield may not lead into the housing or may not be con- nected to a terminal inside the housing. Cable shields have to be connected to the terminals outside the housing.
	4.4 Address- and Bitrate-Setting
	The module address as well as the bitrate can only be changed by CAN bus interface. The protocol to change is the so called Layer-Setting services ("LSS"). Protocol is standarized and can be found in DS-305.
Attention !	Valid module addresses are within the range from 1127, resp. 01h7Fh. Each node within a CANopen network must have a unique module address (Node ID). Two nodes with the same Node ID are not allowed.

Termination

4.4.1 Baudrates

The supported baudrates of the μ CAN.TRS module are given in the following table. The values are recommended by the CiA.

Baudrate (kBit / s)	1	2	3	4	
1000	1	0	0	1	
800	0	0	0	1	
500	1	1	1	0	
250	0	1	1	0	
125	1	0	1	0	
100	0	0	1	0	
50	1	1	0	0	
20	0	1	0	0	
10	1	0	0	0	

Table 3: Setup of baudrate

4.5 Termination

When using several modules on the bus make sure to terminate the CAN bus at the starting point and at the end with a resistor of 1200hm. This ensures to run the CAN bus without physical disturbances like reflections.

To terminate the bus simply connect a resisitor of 1200hm between the CAN-H and CAN-L bus line. When using the M12 connectors this can easily be done by using MicroControl's M12termination-connectors.

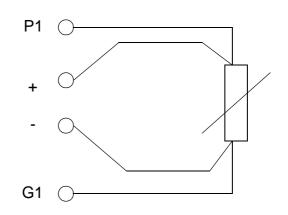
Modules used as T-modules must not be terminated. Please make sure not to multiple terminate the bus. When measuring the resistance between CAN-H and CAN-L (in powered down network) you will get a total value of about 60Ohm.

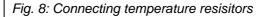
Analogue Input

General Information

	5. Analogue Input		
Naming of input channel	5.1 General Information This chapter shows the different signal types and connection of signal lines to the μ CAN.TRS. Ensure to use proper wiring and keep in mind EMI-rules. Other devices used in conjuction have to meet the safety regulations and EMI requirements. Only if these basic rules are fullfilled, the μ CAN.TRS will deliver stable and high quality measuring signals. The μ CAN.TRS incorporates one analogue input channel. The inpur channel consists of 4 solder pads. In the following table and schematic the 4 pads are defined.		
	Name	Signal type	
	P1	Sensor supply, Pos. chain	
	G1	Sensor supply, Neg. chain	
	+	Signal +	
	-	Signal -	
	Fig. 7: Analogue input μCAN.TRS		
Attention !		gnal lines only if powered down the estruction of hardware may occur.	

Analogue Input


Temperature signals


5.2 Temperature signals

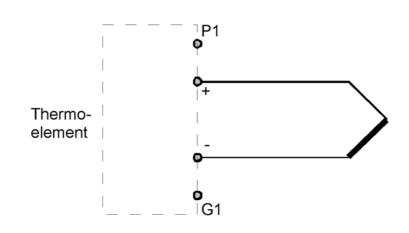
5.2.1 Connection of temperature resisitors

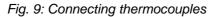
As mentioned before the μ CAN.TRS can directly handle thermocouple signals as well as temperature resistors.

Connection of Pt100/Pt1000 or any other temperature resisitor is shown in the following schematic.

Analogue Input

Temperature signals


5.2.2 Connection of thermocouples


Using thermocouple signals is as easy as using the temperature resisitors. Simply connect the signal chains according to the polarity to the "+" and "-" input pad.

In any case of polarity mismatch you will get negative measuring values at room temperature.

The following schematic shows the thermocouple connection of signal chains.

An automated cold junction compensation takes place on the pcb. The temperatures seen on the CAN bus are completely linearized and compensated.

Connection of strain gauge

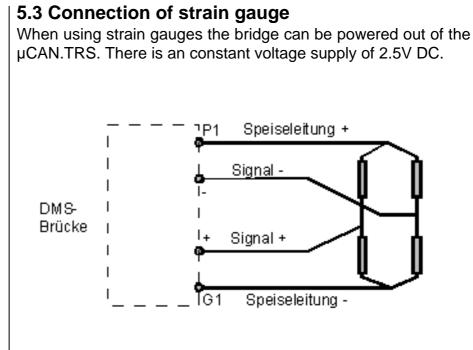


Fig. 10: Connecting strain gauges

5.4 Standard signals

Standard signals like +/-10V DC or 0(4)..20mA can be directly connected to the "+" and "-" solder pads. Please make sure not to confues the poles.

6. CANopen Protocol

This chapter provides detailed information on how to connect the modules of the μ CAN-series to a CANopen-Manager. A CAN-open-Manager can be a PLC, a PC with a CAN interface or any other CAN-Device with NMT functionality.

For more information about CANopen manager please refer to the supplied manuals of your CANopen master device.

This documentation provides the actual implemented functions and services of the μ CAN.TRS.

Introduction

6.1 Introduction

The identifiers of the μ CAN.TRS are set up according to the **Pre-defined Connection Set**, which is described in the CANopen communication profile DS-301 in detail. The following table gives an overview of the supported services.

Object	COB-ID (dec.)	COB-ID (hex)
Network Management	0	0x000
SYNC	128	0x080
EMERGENCY	129 - 255	0x081 - 0x0FF
PDO 1 (Transmit)	385 - 511	0x181 - 0x1FF
PDO 1 (Receive)	513 - 639	0x201 - 0x27F
SDO (Transmit)	1409 - 1535	0x581 - 0x5FF
SDO (Receive)	1537 - 1663	0x601 - 0x67F
Heartbeat / Boot-Message	1793 - 1919	0x701 - 0x77F

Table 4: Identifier values according to the Pre-defined Connection Set

The direction (Transmit / Receive) has to be seen from the devices point of view.

Network Management

6.2 Network Management

By means of the Network Management (**NMT**) messages the state of a CANopen node can be changed (Stopped / Pre-Operational / Operational).

Start Node

Start Node

ID	DLC	B0	B1	
0	2	01h	Node	

Node = module address, 0 = all modules

By transmitting the "Start Node" command the CAN-node will be set into Operational mode. This means that the node can handle PDO-communication.

Stop Node

Stop Node

ID	DLC	DLC B0	
0	2	02h	Node

Node = module address, 0 = all modules

By transmitting the "Stop Node" command the CAN-node will be set into Stopped mode. This means that the node can not handle any services except NMT commands.

Pre-Operational

Enter Pre-Operational

ID	DLC	B0	B1
0	2	80h	Node

Node = module address, 0 = all modules

By transmitting the "Enter Pre-Operational" command the CANnode will be set into Pre-Operational mode. In this state the node can not handle PDO messages.

CANopen Protocol

Network Management

Reset Node

Reset Node

ID	DLC	B0	B1	
0	2	81h	Node	

Node = module address, 0 = all modules

By transmitting the "Reset Node" command the CAN-node will issue a reset operation. After reset the node will send a "Boot-up Message" (siehe "Heartbeat Protocol" auf Seite 34) and enter the Pre-operational state automatically.

6.3 SDO Communication

All parameters of the devices (organized in an object dictionary) are accessed via the SDO service (Service Data Object). A SDO message has the following contents:

ID	DLC	B0	B1	B 2	B 3	B4	B 5	B 6	B 7
	8	CMD	Index		Sub- Index		Da		

For calculation of the SDO message identifier please siehe "Introduction" auf Seite 21.

The Command Byte (CMD) has the following meaning:

Master wants to read from Slave	40h
Slave answers on the read-request	42h
Master wants to write to Slave	22h
Slave answers on the write-request	60h

The byte order for the fields "**Index**" and "**Data**" is least significant byte first (Intel format).

Attention! The minimum time delay between two succeeding SDO-commands must be greater than 20ms. Faster communication might lead to an unpredictible device status.

6.3.1 SDO Abort Protocol

The SDO abort protocol is used to signalize a fault when accessing an object. This SDO abort protocol has the following format:

ID	DLC	B0	B1	B2	B 3	B 4	B 5	B 6	B7
	8	80h	Inc	lex	Sub- Index		Abort	Code	

The identifier as well as the index and sub-index correspond to the SDO request.

The abort code may have the following values:

Abort code	Description
0504 0001h	Client / Server command specifier not valid / unknown
0601 0000h	Unsupported access to an object
0601 0001h	Attempt to read a "write-only" object
0601 0002h	Attempt to write a "read-only" object
0602 0000h	Object does not exist in the object dictionary
0609 0011h	Sub-index does not exist

Table 5: SDO abort codes

6.4 Object Dictionary

This chapter describes the implemented objects for the digital module μ CAN.TRS. For further information please refer to the CANopen communication profile DS-301 and the device profile DS-401.

6.4.1 Communication Profile

The module μ CAN.TRS supports the following objects from the communication profile DS-301:

Device Profile
Error Register
Predefined Error-Register
COB-ID SYNC-Message
Manufacturer Device Name
Manufacturer Hardware Version
Manufacturer Software Version
Guard Time
Life Time Factor
Store Parameters
Restore Default Parameters
COB-ID Emergency-Message
Heartbeat Producer Time
Identity Object
1 st Transmit PDO Parameters
2 nd Transmit PDO Parameters
1 st Transmit PDO Mapping
2 nd Transmit PDO Mapping

 Table 6: Supported objects of the communication profile

Index 1000h

Device Profile

The object at index 1000h describes the type of device and its functionality.

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned32	ro	Device Profile	0003 0191h

The object is read-only. Only sub-index 0 is supported. An access to other sub-indices will lead to an error message.

Example: read parameter, module ID = 2, index = 1000h

ID	DLC	B0	B1	B2	B 3	B 4	B 5	B 6	B7
602h	8	40h	00h	10h	00h	00h	00h	00h	00h

As response the μ CAN.TRS will send:

ID	DLC	B0	B1	B2	B 3	B 4	B 5	B 6	B7
582h	8	42	00	01h	00	94h	01h	02h	00

Byte 5 + Byte 6 = 0194h = 404d (Device Profile Number) Byte 7 + Byte 8 = 0002h = 2 (Additional Information)

Error Register

Index 1001h

The object at index 1001h is an error register for the device.

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned8	ro	Error Register	00h

The object is read-only. Only sub-index 0 is supported. An access to other sub-indices will lead to an error message.

Example: read parameter, module ID = 2, Index = 1001h

ID	DLC	B0	B1	B2	B 3	B 4	B 5	B 6	B7
602h	8	40h	01h	10h	00	00	00	00	00

CANopen Protocol

Object Dictionary

	As res followir	•			will rei support		s error	registe	er valu	e. The		
Generic Error	Bit 0 is set to '1'. The generic error is set due to hardware faults.											
Communication Er- ror	Bit 4 is set to '1'. The communication error is set due to faults on the CAN bus.											
The object is read-only. Only sub-index 0 is supported. An a cess to other sub-indices will lead to an error message.								An ac-				
	Pre-defined Error Field											
Index 1003	The object at index 1003h holds the errors that have occured on the device. The object stores a maximum of 10 error conditions.											
	Sub-Inc	dex [Data Type	e	Acc.	Name			Default	Value		
	0	ι	Jnsigned	8	rw	Numbe	er of erro	rs	00h			
	1 10	110 Unsigned32 ro Standard error field 0000 0000h										
	will clea				r, modu	ıle ID =	= 2, Inc	dex = 1	1003h			
	ID	DLC	B0	B1	B2	B 3	B4	B5	B 6	B7		
	602h	8	40h	03h	10h	05h	00h	00h	00h	00h		
	As resp the his		the mo	odule	will retu	irn the	error v	alue a	t positi	on 5 in		

	Manufacti	urer Device N	lame		
Index 1008	The objec name.	t at index 10)08h coi	ntains the manufa	cturer device
	Sub-Index	Data Type	Acc.	Name	Default Value
	0	Visible String	ro	Device name	µCAN.8.dio
	•	•	•	ub-index 0 is supp ad to an error mess	
	Manufacti	urer Hardwar	e Versi	on	
Index 1009h	The object version.	at index 100	9h cont	ains the manufactu	urer hardware
	Sub-Index	Data Type	Acc.	Name	Default Value
	0	Visible String	ro	Hardware version	HW-1.1
Index 100Ah		r er Software t at index 100		tains the manufact	urer software
	Sub-Index	Data Type	Acc.	Name	Default Value
	0	Visible String	ro	Software version	SW-1.0
				ub-index 0 is supp ad to an error mess	

Index 1010h

Store Parameters

The object at index 1010h supports the saving of parameters in a non volatile memory.

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned8	ro	Number of objects	3
1	Unsigned32	rw	Save all parameters	1
2	Unsigned32	rw	Save communication	1
3	Unsigned32	rw	Save application	1

In order to avoid storage of parameters by mistake, storage is only executed when a specific signature is written to the appropriate sub-index. The signature is "save".

Example: save all parameters, module ID = 2, index = 1010h

ID	DLC	B0	B1	B 2	B3	B 4	B 5	B 6	B 7
602h	8	22h	10h	10h	01h	73h	61h	76h	65h

As response the μ CAN.TRS will send:

ID	DLC	B0	B 1	B2	B 3	B4	B 5	B 6	B7
582h	8	60h	10h	10h	01h	00h	00h	00h	00h

Index 1011h

Restore Default Parameters

The object at index 1011h supports the restore operation of default parameters.

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned8	ro	Number of objects	3
1	Unsigned32	rw	Restore all param.	1
2	Unsigned32	rw	Restore commun.	1
3	Unsigned32	rw	Restore application	1

In order to avoid the restoring of default parameters by mistake, restoring is only executed when a specific signature is written to the appropriate sub-index. The signature is "load".

Example: restore all parameters, module ID = 2, Index = 1011h

ID	DLC	B0	B1	B 2	B 3	B4	B 5	B 6	B7
602h	8	22h	11h	10h	01h	6Ch	6Fh	61h	64h

As response the μ CAN.TRS will send:

ID	DLC	B0	B1	B 2	B 3	B4	B 5	B 6	B7
582h	8	60h	11h	10h	01h	00h	00h	00h	00h

Index 1018h	device.		on oonic	ains general inform						
	Sub-Index	Data Type	Acc.	Name	Default Value					
	0	Unsigned8	ro	Largest Sub-Index	4					
	1	Unsigned32	ro	Vendor ID	0000 000Eh					
	2	Unsigned32	ro	Product Code	0013 9F70h					
	3	Unsigned32	ro	Revision Number	0001 0000h					
	4	Unsigned32	ro	Serial Number	-					
/endor ID	facturer. T		are mar	ue value allocated haged by the CAN						
Product Code	The Produ	ict Code ider	ntifies a s	specific device ver	sion.					
Revision Number	word) and sion numb	a minor revis er identifies a umber identif	sion num a specifi	of a major revision ber (lower word). c CANopen behav rent versions with t	The major revi iour. The mino					
Serial Number	The Serial Number identifies a specific device.									

0

Object Dictionary

Guard Time Index 100Ch Über den Index 100Ch kann die Guard Time für das Node-Guarding Protokoll eingestellt werden. Die Multiplikation der Werte auf den Indicies 100Ch und 100Dh ergibt die "Life Time" eines Knotens. Sub-Index Datentyp Zugriff **Bedeutung** Defaultwert Unsigned16 **Guard Time** 0 rw 0 Das Objekt kann gelesen und geschrieben werden. Es wird nur Sub-Index 0 unterstützt. Ein Zugriff auf andere Sub-Indices wird mit einer Fehlermeldung quittiert. Life Time Factor Index 100Dh Über den Index 100Dh kann der Life Time Factor für das Node-Guarding Protokoll eingestellt werden. Die Multiplikation der Werte auf den Indicies 100Ch und 100Dh ergibt die "Life Time" eines Knotens. Sub-Index Datentyp Defaultwert Zugriff **Bedeutung**

Unsigned8

Das Objekt kann gelesen und geschrieben werden. Es wird nur Sub-Index 0 unterstützt. Ein Zugriff auf andere Sub-Indices wird mit einer Fehlermeldung quittiert.

Life Time Factor

0

rw

CANopen Protocol

Heartbeat Protocol

	6.5 Heartbeat Proto	col						
	The Heartbeat Protocol is used in order to survey other nodes in the network and retrieve their network state. The Identifier for the Heartbeat Protocol is set to 700h							
Heart Beat ID	address. The Identifier of tition time (called "Heart	an not be changed. T	he message repe					
	object 1017h. The Heartbeat Protocol sents the network state.	•	data, which repre					
	The Heartbeat Protocol	•	data, which repro					
	The Heartbeat Protocol sents the network state.	-						
	The Heartbeat Protocol sents the network state.	Code (dec.)	Code (hex)					
	The Heartbeat Protocol sents the network state. Network State Bootup	Code (dec.) 0	Code (hex)					

After Power-on / Reset the module will send the "Bootup message" to signal that it finished the initialization sequence.

Example: Power-on of module with address 2

ID	DLC	B0
702h	1	00h

Heartbeat Protocol

Index 1017h

Producer Heartbeat Time

The object at index 1017h defines the cycle time of the heartbeat. The producer heartbeat time is 0 if it is not used. The time is a multiple of 1ms.

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned16	rw	Producer Time	0000h

Only sub-index 0 is supported. An access to other sub-indices will lead to an error message.

Example: Producer Time 1000 ms, module address 1

ID	DLC	B0	B1	B2	B 3	B 4	B 5	B 6	B 7
601h	8	22h	17h	10h	E8h	03h	00h	00h	00h

The answer you will receive from the module is:

ID	DLC	B0	B1	B 2	B 3	B 4	B5	B 6	B7
581h	8	60h	17h	10h	00h	00h	00h	00h	00h

The Heartbeat Producer Time is not saved inside the non-volatile memory autonomously. It is necessary to store this parameter via object 1010h (siehe "Store Parameters" auf Seite 30).

Note

6.6 PDO Communication

The real-time data transfer is performed by means of "Process Data Objects" (PDO). The transfer of PDOs is performed with no protocol overhead.

PDO communication is only possible in the network state "Operational".

6.6.1 Transmission Modes

Event Driven

Message transmission is triggered by the occurrence of an object specific event. For synchronous PDOs this is the expiration of the specified transmission period, synchronised by the reception of the SYNC object. For acyclically transmitted synchronous PDOs and asynchronous PDOs the triggering of a message transmission is a device-specific event specified in the device profile.

Timer Driven

Message transmission is either triggered by the occurrence of a device-specific event or if a specified time has elapsed without occurrence of an event.

6.6.2 Transmit PDO 1

Index 1800h

The object at index 1800h defines communication parameters for the Transmit-PDO.

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned8	ro	Largest Sub-Index	5
1	Unsigned32	rw	COB-ID for PDO	180h + Node
2	Unsigned8	rw	Transmission Type	FFh
5	Unsigned16	rw	Event Timer	0000h

Only sub-indices 0 to 2 and 5 are supported. An access to other sub-indices will lead to an error message.

COB-ID for PDO Sub-Index 1 defined the identifier for the Transmit-PDO. The 32bit value has the following structure.

Bit 31	Bit 30	Bit 29	Bit 28 - 0
PDO valid,	RTR allowed,	Frame type,	Identifier,
0 = valid	0 = yes	0 = 11 Bit	
1 = not valid	1 = no RTR	1 = 29 Bit	

Table 8: Definition of COB-ID for PDO

In order to enable the PDO the most significant bit (Bit 31) must be set to 0. In order to disable the PDO the most significant bit must be set to 1. In the default setting the PDO is active (Bit 31 = 0).

Transmission Type The transmission type defines the transmission character of the PDO.

Transmission Type	Description
00h	acyclic synchronous,
01h - F0h (1 - 240 dez)	cyclic synchronous,
FFh (255 dez)	event driven, PDO is sent when Event Timer elapses

Table 9: Setup of Transmission Type

The Transmit-PDO has 2 bytes of process data. The contents is copied from object 7130h into the PDO.

Example: Temperature input at $200,8^{\circ}$ C = 07 D8 hex, module address = 1

ID	DLC	B0	B1
181h	1	D8h	07h

Transmission of the PDO is only possible in Operational Mode.

6.6.3 Transmit PDO 2

Index 1801h

Index 1801h has same settings like Index 1800h except for the fact that Transmit PDO 2 contains the so called field values.

The field value consist of 2 bytes data and contains the non-linearized values from the analog-to-digital converter. These data is normally not for use but in case of a linear ratio between input and output value (like 0..20mA) these values can be used for customer specific linearisation on the master module.

Example: Analogue input at 0V DC = 8000 hex, module address = 1

IC)	DLC	B0	B1
281	h	1	00h	80h

6.6.4 Synchronisation Message

Index 1005h

The object at index 1005h defines the identifier for the SYNCmessage. On reception of a message with this identifier the transmission of PDOs is triggered (siehe "Transmit PDO 1" auf Seite 37)..

Sub-Index	Data Type	Acc.	Name	Default Value
0	Unsigned32	rw	COB-ID SYNC	80h

Only sub-index 0 is supported. An access to other sub-indices will lead to an error message.

Example: Set SYNC-ID to 10, module address 1

ID	DLC	B0	B1	B 2	B 3	B4	B 5	B 6	B7
601h	8	22h	05h	10h	0Ah	00h	00h	00h	00h

As answer you will get the following message:

ID	DLC	B0	B1	B2	B 3	B4	B 5	B 6	B7
581h	8	60h	05h	10h	00h	00h	00h	00h	00h

The default identifier is 80h in order to ensure a high priority of the SYNC-message.

The SYNC-identifier is not saved inside the non-volatile memory autonomously. It is necessary to store this parameter via object 1010h (siehe "Store Parameters" auf Seite 30)

Emergency Message

Note

6.7 Emergency Message

Emergency objects are triggered by the occurrence of a device internal error situation and are transmitted from an emergency producer on the device.

An emergency is different from a SDO Error Message. The last one only holds the access error to the object dictionary, whereas an emergency display a severe hardware/software failure.

The emergency identifier has the default value 128d + moduleaddress. The emergency message has the following structure:

ID	DLC	B0	B1	B 2	B 3	B4	B 5	B 6	B7
	8	Error Code		00h	Mar	nufacture	er Specifi	c Error F	ïeld

The following emergency error codes are supported:

Error Code (hex)	Description
0000	Error Reset or No Error
1000	Generic Error
50xx	Device-Hardware
6000	Device-Software
80xx	Communication Error / Physical

Table 10: Emergency Error Codes

CANopen Protocol

Emergency Message

6.7.1 Device Specific Parameter

The μ CAN.TRS contains the following device specific objects. These objects can be found in the DS-404 profile.

Object	Description	Access
6110	Sensor Type	ro
6112	Operating Mode	rw
6131	Process Value Physical Unit	ro
6132	Process Value Dec. Digits	ro
6150	Input Status	ro
6508	Alarm Type	rw
6509	Alarm Action	rw
650D	Alarm State	ro
7100	Field Value	ro
7130	Process Value	ro
7500	Alarm Input Value	ro
750A	Alarm Level	rw
750B Alarm Hysteresis		rw

µCAN.TRS

7. Technical Spec	ification
7.1 μCAN.TRS	
Technichal Specifica	ation
Supply Voltage	
Supply Voltage	840 V DC, polarity protected
Power consumption	typ. 350mW, max. 600mW
Connection	M12-connector
CAN-Interface	
Supported Bitrates	10kBit/s up to 1MBit/s (according to CiA recommandation)
max. number of nodes	127
Status on the bus	active Node
Protocol	CANopen, DS-404, customer specific protocols on request
CAN specification	2.0A and 2.0B
Connection	M12-connector
Environmental cond	litions
Working temp.	-40°C +85°C
Storage temp.	-50°C +100°C
rel. humidity	15-95%
General	
Size (WxLxH)	81 x 22 mm
Weight	approx. 72 g
Sensor-Input	
Sensortypes	Thermocouple Typ J,K,L (different types on request) Pt100 / Pt1000

Technical Specification

µCAN.TRS

Signaltypes	+/- 10 V DC 0-20mA, 4-20mA
	Strain Gauge, 350 Ohm, 4-wire Pressure Transducers
Connection	M12 connector
Resolution	All signals are converted with 16Bit resolution at sample rates higher 200Hz resolu- tion will decrease to 12Bit
EMC	
EMC	EN 50082-2
Electromagnetic fields	10 V/m, according to ENV 50204
Burst	5 kHz, 2 kV according to EN 6100-4-4
HF unsymmetrical	10 V, according EN 61000-4-6
	Emmision according to EN 50081-2, EN 55022, Class A

7